Client Meeting Agenda

Topic: ME 476C Team Client Meeting

Friday March 15th, 2024 ~7:30am-8:30am

Meeting called by: Dr. Tom Acker

Attendees: Janelle, Courtney, Aaron, Steven, Maciej and Dr. Tom Acker

7:30am-7:40am	Presentation of Roles and Schedule Report 1 Topics Website Check 	Room
7:40am-8:15am	 Website Discussion (Courtney and Steven) Should we include link to SRP? Report 1 Topics Discussion Customer Requirements Engineering Requirements Concept Selection 	
8:15am-8:20am 8:20am-8:30am	 Additional Questions Next week Analysis Memos coming up Prototype testing plan 	

Meeting Notes:

h NPV

- 1) Compare 2 alternatives, do nothing but pay the electric bill, can do it on an annual basis, PHX is probably in the \$1000's.
- 2) The material product is the initial investment, maitence how many times a year does the CM need to be replaced
- 3) If it comes out positive it is a good product, where if it is less than it is a poor product
- 4) Put it in a spreadsheet, and create a NPV table
- 5) Compare with each design will drive what our decision for the final design will be
- 6) Has to save a LOT of money

- 7) We need to pick a lifetime for the life expectancy of the device. Not based on electricity bill because that is forever
- 8) I is the discount rate
- 9) What rate of return, what is the intrest rate on that money, the morgae rate becomes the cost of money
- 1) What people expect as a rate of return on the device, Find papers on discount rates
- 2) 8% is about what SRP's 4% is more normal
- 3) The NPV and internal rate of return are what we want. We need a strong internal rate of return value,
- 4) Discount rate is huge and important to understand in this project. We NEED to understand that

BUILT THIS FORM	TO MATCH C	HICO'S LCOE C	CALCULATOR												
Gr	een Shading = II	NPUT number	Present	t Value factor =	1/(1+i)^n			Fraction avoided =	100%						
	llow Shading = 0			dation factor =			SRP huvha	ack rate Years 1-10 =		per kWh					
	ange Shading =		- Degre		(\$12,240)			k rate Years 11-25 =		per kWh (assume	s inflation ra	te of electrici	ty for 10 year	(a)	
	ue Shading = Re				(1946)2-10]								.,,	-,	
	ac ondoing - ne	sures summary						kWh	\$/kWh	kWh	Ś	kWh	Ś	kWh	
	Project life =	25	vrs		Present	Degredation	kWh	Discounted	Ave SRP Cost	SRP avoided		Energy sold		Energy purch.	. Pa
	unt Rate = i =	7.52%		Year	Value factor	0		. Energy Prod.	of Energy	Energy Purchase	0	to SRP	from SRP	from SRP	te
Overn	ight Capital =	(\$37,800)		0	1.00		0,	07		0,					
	ITC =	30%		1	0.93	1.00	14,717	13,688	\$0.110	10,000	\$1,100	4,717	\$189	0	
Cash v	alue of ITC =	\$11,340		2	0.87	0.993	14,607	12,635	\$0.112	10,000	\$1,124	4,607	\$184	0	
S	tate rebate =	\$1,000		3	0.80	0.985	14,499	11,664	\$0.115	10,000	\$1,149	4,499	\$180	0	
Net	Investment =	(\$25,460)		4	0.75	0.978	14,391	10,768	\$0.117	10,000	\$1,175	4,391	\$176	0	
ACs	ystem size =	7	kW-AC	5	0.70	0.971	14,283	9,940	\$0.120	10,000	\$1,201	4,283	\$171	0	
	DC:AC ratio =	1.24		6	0.65	0.963	14,177	9,176	\$0.123	10,000	\$1,227	4,177	\$167	0	
DC s	ystem size =	8.7	kW DC	7	0.60	0.956	14,072	8,471	\$0.125	10,000	\$1,254	4,072	\$163	0	
Installed s	ystem cost =	\$5,400	/kW-AC	8	0.56	0.949	13,967	7,820	\$0.128	10,000	\$1,282	3,967	\$159	0	
AC Cap	acity Factor =	24.0%		9	0.52	0.942	13,863	7,219	\$0.131	10,000	\$1,310	3,863	\$155	0	
DC Capa	city Factor =	19.4%		10	0.48	0.935	13,760	6,664	\$0.134	10,000	\$1,339	3,760	\$150	0	
Annual energy	per kW-AC =	2,102	kWh/kW-AC	11	0.45	0.928	13,657	6,151	\$0.137	10,000	\$1,369	3,657	\$182	0	
Est.Ann. E	nergy Prod.=	14,717	kWh	12	0.42	0.921	13,556	5,679	\$0.140	10,000	\$1,399	3,556	\$177	0	
	Total cost =	(\$37,800)		13	0.39	0.914	13,455	5,242	\$0.143	10,000	\$1,430	3,455	\$172	0	
Cost after ITC & s	tate rebate =	(\$25,460)		14	0.36	0.907	13,355	4,839	\$0.146	10,000	\$1,462	3,355	\$167	0	
	Project life =	25	years	15	0.34	0.901	13,255	4,467	\$0.149	10,000	\$1,494	3,255	\$162	0	
Di	scount rate =	7.52%		16	0.31	0.894	13,156	4,124	\$0.153	10,000	\$1,527	3,156	\$157	0	
	LCOE =	0.165	\$/kWh	17	0.29	0.887	13,058	3,807	\$0.156	10,000	\$1,561	3,058	\$152	0	
Ann. Elec. Co	nsumption =	10,000	kWh	18	0.27	0.881	12,961	3,514	\$0.160	10,000	\$1,595	2,961	\$147	0	
Ave cost of electricity (elec. +	tax + fees) =	\$0.11	per kWh	19	0.25	0.874	12,865	3,244	\$0.163	10,000	\$1,630	2,865	\$143	0	
inflation rate o	f electricity =	2.21%	2.21%	20	0.23	0.868	12,769	2,995	\$0.167	10,000	\$1,666	2,769	\$138	0	
				21	0.22	0.861	12,674	2,765	\$0.170	10,000	\$1,703	2,674	\$133	0	
Degree	dation rate =	0.75%	per year	22	0.20	0.855	12,580	2,552	\$0.174	10,000	\$1,741	2,580	\$128	0	
Total Degred	ation factor =	0.916		23	0.19	0.848	12,486	2,356	\$0.178	10,000	\$1,779	2,486	\$124	0	
Degredated Lifetime Er	ergy Prod. =	336,855		24	0.18	0.842	12,393	2,175	\$0.182	10,000	\$1,819	2,393	\$119	0	
Lifetime Energy Prod.	No degred.=	367,920		25	0.16	0.836	12,301	2,008	\$0.186	10,000	\$1,859	2,301	\$115	0	
				¢	2										
LCOE = Investment			ion)	Ann. Pro	duciton with a	degredation =	336,855	153,962 = disc	ounted energy p	roduction					
LCOE =	0.165 \$/	'kWh		Ann. Pr	oduction no o	degredation =		142,106 = disc	ounted energy o	ver 20 YEARS ONL	Y				
Discount Rate = i =	7.52%				Total Degred			124,422 = disc		ver 15 YEARS ONL	Y				

et	thod of selecting discount rate	> Climate	15-yr Mort	Energy Star	Hi 30-yr Mort	Chico	S&P 500
		Acker 0%	Acker 4%	Acter 5%	Acker 7%	Acker 8%	Acker 11%
1	Installed system cost (\$/kW-AC)=	\$4,282	\$4,282	\$4,282	\$4,282	\$4,282	\$4,282
	Capacity factor	= 19.1%	19.1%	19.1%	19.1%	19.1%	19.1%
e	energy per kW-AC (kWh/kW-AC) =	= 1,673	1,673	1,673	1,673	1,674	1,673
	System size (kW-AC)	= 10.75	10.75	10.75	10.75	10.75	10.75
	Est.Ann. Energy Prod.	= 17,986	17,986	17,986	17,986	18,000	17,986
	Total cost	= (\$46,032)	(\$46,032)	(\$46,032)	(\$46,032)	(\$46,027)	(\$46,032
	Cost after ITC & state rebate	= (\$31,222)	(\$31,222)	(\$31,222)	(\$31,222)	(\$31,219)	(\$31,222
	LCOE (\$/kWh)	= 0.074	0.117	0.129	0.155	0.169	0.213
	Discount Rate	= 0%	4%	5%	7%	8%	11%
	NPV :	\$55,672	\$21,189	\$15,667	\$6,934	\$4,676	(\$4,411
	IRR =	9.2%	9.2%	9.2%	9.2%	10.1%	9.2%
	Project life (years)	= 25	25	25	25	25	25

Website

Add a page and link to SRP's public landing page

Decision Matrix Internal rate of return are key factors in anything Ideas that have a negative NVP they are not going to be considered. PERIOD Comfort level- will it keep the house cool and help with the load Ease of Maintenace and operating cost Load and power saving are the same thing Split the new build and existing- and do what calculations we need for the product, which market are we planning on doing. He wants us to pick based on the ideas we have. He wants us to go with based on what we are enthusiastic about. Based on the NVP for each

Reject number- If it rates below a number, we just don't do it

Final Design We need to do the thermal analysis if we are taking out the refrigerant, if not we just need to find the heat being dissipated from the line We are taking the 2 choices take the cold air the other take the refrigerant Think of a freezer

Micro PCM panel

If we put the PCM directly into a device like courtneys, if we could use the PCM Steven's overall is a simplified model of everything How are we storing it? How do we cool the air down? Compressor only compresses gases not liquid We can buy a cheap AC device and take it apart for parts Vent refrigerant and then how to load it back into the system There is an HVAC person on campus who can do it for us, we need an HVAC professional to do that for us If we cut into the lines we need an HVAC person If we make our own we need someone to help us

Material Analysis This is a great start

The 12 kw AC find out what the typical AC load is i a house It is basically saying how much ice can it freeze in an hour Everyone needs to calculate the efficiency for each part of the design What is the efficiency of this unit We can do a CFD model on this, but we can do first law and heat transfer calculations Compare basic battery storage with our device

2 analysis

Financial NVP analysis on each device We each have a device and we need to run a heat transfer analysis on each portion. When we are releasing the heat and when we are recharging the device. Each needs a thermal analysis, using the first law of thermodynamics, and heat exchanger Refrigerant cycle analysis